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Departamento de Fisica Tebrica, Facultad de Ciencias Fisicas, Universidad Complutense, 
28040 Madrid, Spain 

Received 27 July 1984, in final form 27 November 1984 

Abstract. We calculate the lowest non-zero eigenvalue of the Fokker-Planck equation for 
an infinite square lattice of coupled overdamped anharmonic oscillators (bistable potentials) 
through a variational calculation. It generalises previous work for only one oscillator in 
a non-trivial way. We reduce that calculation to that of a suitable ratio of partition functions 
for the 2D Ising model, for which an exact analytical expression is obtained. Numerical 
results are also given and discussed. 

1. Introduction 

Much attention has been paid to the understanding of self-organisation and cooperative 
behaviour in non-equilibrium systems (Haken 1975, 1977, Dawson 1983 and references 
therein, Desai and Zwanzig 1978, Weindenmuller and Jing-Shang 1984). To describe 
these systems stochastic nonlinear partial differential equations, typically Fokker- 
Planck, Langevin or It8 equations, are used. Recently, numerical analysis of the 
so-called cellular automata have also been investigated, showing self-organisation 
(Wolfram 1983). 

In this paper we consider a planar lattice of bistable potentials, each of which is 
coupled to its nearest neighbours. The bistable potential is represented by a quartic 
overdamped anharmonic oscillator. Thermal fluctuations, which drive the system 
towards equilibrium, have been taken into account through Gaussian-correlated white 
noise. The time dependent probability density for a given configuration of the ‘posi- 
tions’ q,,, of the oscillators, f({ qt,,}, t ) ,  obeys a nonlinear Fokker-Planck equation. We 
calculate the lowest non-zero eigenvalue, E , ,  of the time-independent version of the 
Fokker-Planck equation in a suitable limit (‘discrete spin limit’), in which the position 
of each oscillator is allowed to take just two values, +1, or -1 (§ 2). In such a limit, 
all other (higher) non-vanishing eigenvalues become very large (and, eventually, 
diverge). We reduce the calculation of E ,  to that of a specific ration of partition 
functions for the ZD Ising model, and make full use of the fact that the latter can be 
solved exactly. This fact allows us to determine that ratio of partition functions (0 3). 
Numerical results are also obtained and analysed ( 0  4). 

As is well known, the continuous nonlinear Fokker-Planck equation (Mui~oz 
Sudupe and Alvarez-Estrada 1983) is deeply related to the quantum field theory: 
in fact, the former is a ‘dynamical version’ of the AC$‘ model, as it can be seen through 

0305-4470/85/081239 + 16%02.25 0 1985 The Institute of Physics 1239 



1240 A Mufioz Sudupe and R F Alvarez-Estrada 

the fluctuation-dissipation theorem. On the other hand, the theory on a lattice 
gives, in an  appropriate limit, the Ising model (Glimm and Jaffe 1976). Then, it is to 
be expected that the Fokker-Planck equation on a lattice, in a similar limit, will give 
information about the dynamics of the Ising model. In some sense, we are investigating 
the rate at which the ZD system under consideration reaches equilibrium (see our 
comments below (2.8)). 

Our study has certain formal similarities (but it does not seem to coincide exactly) 
with the Glauber model (Glauber 1963) for the dynamics of the Ising model. 

Larson and  Kostin (1978) have studied the same problem for just one overdamped 
anharmonic oscillator: they found the eigenvalue El (as well as the remaining higher 
eigenvalues) in the same limit, through a variational-like calculation. The case of one 
oscillator has also been studied recently and  the eigenvalue E ,  has been calculated 
using supersymmetry and a variational principle (Bernstein and  Brown 1984). 

In an earlier work, we have generalised non-trivially the Larson-Kastin arguments 
to an infinite linear chain of coupled overdamped anharmonic oscillators (Alvarez- 
Estrada and  Mufioz Sudupe 1984) finding the leading behaviour of E ,  in the ‘discrete 
spin limit’: we d o  not give the detaik of these calculations here as they are simpler 
than the ones we require to study the infinite planar lattice. 

We shall also mention briefly that a relationship seems to exist between our work 
and  the so-called instanton calculus (Zinn-Justin 1984), but we shall not deal with the 
latter here. 

On the other hand, Desai and Zwanzig (1978) and Dawson (1983) have analysed 
an  infinite chain of anharmonic oscillators (mean-field model), in which each of the 
latter interacts, in some sense, with every other oscillator, not just with its nearest 
neighbours. They obtained a phase transition through numerical simulation and a 
perturbation theory for Markov processes. So, our  work, in which every oscillator 
interacts only with its nearest neighbours, is complementary to their work. In principle, 
we d o  not pretend to perform here a proper and detailed calculation in the region of 
parameters where a phase transition is to be expected. Nevertheless, some (perhaps 
vague) signal of a phase transition is seen to appear: see the discussion in 9 4.2 and  
the table in appendix 3. 

2. Square lattice of coupled anharmonic oscillators 

We consider a n  infinite 2~ square lattice of overdamped anharmonic oscillators coupled 
together through nearest-neighbour interactions. The potential energy of an arbitrary 
configuration { qi , j } ,  where --CO < qij < 00 for any i, j is 

+m 

The equations of motion for the planar lattice of coupled overdamped anharmonic 
oscillators without fluctuations read dq,,,/dt = -aV/aq,,[. It is easy to see that the 
set qj,l = + I  for all j ,  1 constitutes a stable solution. In fact, by analysing the 
small perturbations about it, namely, = 1 + dot exp i( k , j  + k21 + ut) where do) is a 
small amplitude, independent on j ,  I ,  one gets directly: w = 
i2{p + y [ (  1 -cos k,) + (1 -cos k , ) ] }  which implies stability. Similarly, the set = - 1 
for any j ,  1 is another stable solution, while qjr = 0 for any j ,  1 is an  unstable one. 
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If one includes white-noise fluctuations, the corresponding Langevin equation is 
( i , J=0 ,*1 ,*2  ) . . . )  *a): 

dqt , J /d t=  -av/aql,,+&,,(t) (2.2) 

where (tL,,) = 0 and (t,,l(t)&I( t ’ ) )  = Q8,$,,,8(t - t ‘ ) .  Equivalently, we may write the 
associated Fokker-Planck equation for the probability density of the configuration 
{qZ,J>, f ( {qZ,J}3  ‘1, as 

(2.3) 

Later on, we shall consider a finite lattice with M x M sites, occasionally, and  then 
take the limit M + w .  

The stationary probability density fo(dfo/at = 0) is: 

fo= N expi-2Q-l V({qi,,})I (2.4) 

where N is a normalisation constant, so as to satisfy 

In order to see the relation of the system under consideration and  the 2~ Ising 
model, let us compute fo in the ‘discrete spin limit’: p + +a, CY + --CO with /3 = -CY, y, 
Q being fixed. The result is, by using limA+= exp(-Ax’) = ( T / A ) ” * ~ ( X ) :  

where the normalisation constant Z is seen to coincide with the partition function of 
the 2~ Ising model and  H is the interaction energy between neighbouring spins with 
coupling 2yQ-I. It may also be verified easily from (2.5) that the equal-time correlation 
function for (2.3)-(2.4) gives, in the same limit, the correlation function of the 2~ Ising 
model. 

The probability density f can be formally written, in general, as 

where E , =  0 and  ho= 1, and the positive eigenvalues E ,  of the time-independent 
version of (2.3) increase with n. As we are interested in the long-time behaviour o f f ,  
we retain the term corresponding to the lowest non-vanishing eigenvalue ( n  = 1) in 
the right-hand side of (2.6). Upon substituting (2.6) into (2.3), we may write the 
resulting equation for h ,  (CY = - p )  as 

(2.7) 
Upon multiplying both sides of (2.7) by h l  and integrating by parts on the right-hand 
side, the first eigenvalue E , ,  which determines the long-time behaviour o f f ,  may be 
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written as: 

This formula will be used to compute E ,  for large p ( p  = - a ;  y, Q being fixed) 
through a variational-like calculation which will consititute a non-trivial generalisation 
of that of Larson and Kostin (1978) for the case of only one oscillator ( i  = j = M = 1). 

They showed that, in such a limit, E ,  is, essentially, the rate constant which controls 
the long-time behaviour of the systems consisting of just one oscillator and, hence, 
how the latter approaches equilibrium. One is tempted to argue that, in the actual 
case of an  infinite planar lattice of such oscillators, E ,  could play a similar role. We 
recall that in the case of only one oscillator, Larson and  Kostin expressed the corre- 
sponding analogue of h ,  as an error function. Two essential remarks about their 
calculation (see equations (2.1 1)-(2.14) in their paper) follow: 

(1 )  The derivative of their h ,  gives non-negligible contributions to the analogue of 
N only for values of q close to zero. 

(2) On the other hand, the same h ,  turned out to be essentially constant except 
for values of q close to zero and, hence, it was seen to give appreciable contributions 
to the analogue of D only for values of q close to * l .  We shall generalise these facts 
to our present case, in a non-trivial way. 

The approximate solution of (2.7) with E ,  = O  on the left-hand side and generic 
configurations in which all the oscillator coordinates nearly take on the values q,,, = * 1, 
except for the one located at the ( k ,  /)-site where qL,, = 0, will be adopted, by extending 
the choice of Larson and Kostin. These configurations correspond heuristically to the 
tunnelling of the spin at the ( k ,  1)-site between its two stable configurations qk.( = 51. 
This unique function h ,  will be used both in N and D of (2.8). We shall outline below 
the explicit construction of h ,  and of its derivative, and the calculation of their 
contributions to N and D. 

2.1. Approximate expression for h ,  

The solution h ,  may be approximately factorised for large /3 ( p  = -a, y and Q being 
fixed) as 

hl({qd,,I)  = Ll({qz,,I, ( t i )  + (k, U )  . G ( q k , / )  (2.9) 

where we have neglected terms of O( -y/p). 
The function L(qk,l) is an  error function with derivative 

2 c being a constant, E : + , , /  = & k , l i l  = 1 and 

L,( {q , , , } ,  ( i , j )  z ( k ,  1 ) )  =constant. (2.10b) 

The justification of (2.9) and (2.10~2, b)  starting from (2.7) is outlined in appendix 1. 
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It is easy to show that h ,  gives approximately a true trial function in the sense of 
the Ritz variational principle, when terms of order y’/P are neglected. In fact, (2.8) 
can be cast into an equivalent Hamiltonian form by using the transformation h + 4 = 
f;’*h, as in appendix 2. We only need to show that qbI =f,!,’’h, is approximately 
orthogonal to q50=f,!,’2, that is, that 

vanishes approximately. In fact the right-hand side of ( 2 . 1 0 ~ )  is even when the term 
- ~ Y Q - ’ ( E ~ + ~ , ,  + & k - l , I +  & k , l + l +  &k,l-l)qk,l (that is, terms ofrelative order y * / ~ )  is neglec- 
ted and, hence, h ,  is approximately odd under q k ,  + -qkl while fo is even. 

2.2. Calculation of N 

Upon introducing ( 2 . 1 0 ~ )  and (2.4) into N, one realises that the main contributions 
as p is large ( y  and Q being fixed) come from values of qkl close to zero and from 
the remaining q0 = *1 for ( i , j )  # ( k ,  I ) .  We stress that this is precisely the natural 
generalisation to the planar lattice of the corresponding step made by Larson and 
Kostin ( 1978) in their variational calculation for only one anharmonic oscillator: 
compare with (2.11)-(2.13) and related remarks in their paper. 

Notice that all this amounts to replacing fo by 

(2.1 1 )  

where the prime over lI and indicates that all terms containing qcI have to be 
excluded. We have replaced the E’S appearing in ( 2 . 1 0 ~ )  by q’s, since the latter fulfil 

Notice that the factor exp{[(/3-4y)/Q]q2kI} in (2.11) is overcome by twice a 
similar factor coming from the square of ( 2 . 1 0 ~ )  using (2.10a, b )  and (2.11) in N (2.8), 
the Gaussian integral over qk,/ can be easily calculated and finally yields 

q 2 =  1. 

(2.12) 

where we have neglected terms o f O (  y / J z )  (coming from 2 . 1 0 ~ ) )  and C, is a constant. 
The sum over configurations (excluding all terms containing the ( k ,  I)-spin) in the 
right-hand side of (2.12) is the partition function for an Ising model, in which the 
( k ,  I )  spin has been removed. Let us call it Zkb So, we have 

N = J2 C: exp[ -(-)I P - g Y  7. Zk, 
2Q 

(2.13) 
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2.3. Calculation of D 

Upon integrating ( 2 . 1 0 ~ )  in (0, q k l )  one sees that i ( q k l )  is nearly constant except for 
values of q k l  close to zero and  so on if one integrates it in ( - q k [ ,  0): compare with the 
comments in Larson and Kostin, after their equations (2.10) and  (2.13). Consequently, 
by considering D and recalling (2.4), the integrations over all qz, (including q k l )  are 
significant only for qv = i 1. This is equivalent to replacing f o  in D by the right-hand 
side of (2.5) for all q,, (including q k l ) .  It turns out that the normalisation factor z-' 
in (2.5) cancels with a similar factor arising from the integration over all qz,. 

So, we obtain for p >> 1, p = -a, y and Q being fixed: 

D = ( r Q / 4 p ) C : .  (2.14) 

Using (2.13) and (2.14) in (2.8) we get the main result which determines the smallest 
non-vanishing eigenvalue for (2.7) 

E , = - p e x p  2v'2 [ - ( - p2:y)] - zk,l 
7T Z '  (2.15) 

Equation (2.15) for the case of only one oscillator coincides with (2.16) of Larson and  
Kostin, since Z k l / Z  becomes $ in such a case. 

We remark, at this point, that the limit that we are considering, that is, p large, y 
and Q fixed, amounts, somehow, to 'freezing' the dynamics, which is reflected in the 
term p exp(-$Q-'). The 'static' part, namely, the quotient z k , l / z  may still display 
'signals' of some static critical behaviour, if y ( y < <  p )  is not small (see later). The 
point is that we have set fixed the magnitude of the random pushes, represented by 
the diffusion parameter Q, while we have increased the potential barrier between q,,J = 1 
and q,,J = -1  (as p +a, with p = - a ) :  the dynamical effect is the tunnelling between 
the two minima. 

At this point, it may be interesting to recall the following result of Larson and  
Kostin (1978) for just one overdamped anharmonic oscillator. Equation (2.16) in their 
paper turns out to approximate the numerical (say, exact) results for the first eigenvalue 
with error less than 10% for $Q-' 2 4: the error is 4% for @Q-' 3 10 and decreases 
to zero as $Q-' increases (see table 1 in Larson and Kostin 1978). This suggests that 
(2.15), which is the generalisation of their result for the infinite planar lattice may also 
be reasonably accurate for finite values of p (provided that they are larger than y ) .  
Equation (2.15) which is a highly non-perturbative result regarding the p dependence 
is the leading term of an  asymptotic expansion for large p. Higher-order terms could 
be obtained in principle by generalising the procedure outlined in Larson and Kostin, 
which led to their (2.25); we shall not d o  it here because such a task lies outside the 
scope of this work. 

One may ask, a posteriori, whether other configurations, different from those con- 
sidered above, could give rise to sizeable contributions to E ,  or  whether another (finite) 
structure for E , ,  different from (2.15), could exist. The fact that our procedure, so far, 
is the simplest and most natural (albeit non-trivial) generalisation to an  infinite planar 
lattice of coupled anharmonic oscillators of the method used by Larson and Kostin 
(1978) for only one, already seems a very strong indication that the answers to the 
above two questions are negative. In  appendix 2 ,  we shall provide further arguments, 
which also lead to negative answers for them. 
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The quotient of partition functions in (2.15) which is, obviously, non-negative may 
be calculated using the transfer matrix method (Huang 1963) and introducing fermion 
operators (Schultz et a1 1964). This will be the subject of the next section. 

3. Evaluation of Z,JZ 

Consider now the lattice to be finite, having M x M sites with periodic boundary 
conditions: qi,M+I = qi, l ,  q M + l , j  = ql,J.  We denote the rth row of that lattice as p, that 
is pr=  (qr, l ,  . . . , qr,M).  We may write the partition function z k f  as (notice that the kth 
row is excluded): 

z k l =  c’ (pk+llPlpk+Z). . . ( ~ k - 2 ~ p ~ ~ k - I ) ( ~ k - I ~ p ) k l ~ ~ k + I ) .  (3.1) 

In (3.1) P is the usual transfer matrix of the ZD Ising model: 
M 

P = ( 2 s i n h ~ )  4 y  (exp- Y M  c ~ j ~ : + , ) ( e x p 6  Q , = - M  I = - M  T: ) .  

M / 2  
~j~t,)=(2sinh:) V:/2VIV:’2 (3.2) 

with tanh 6 = exp(-4yQ-’) and T : ,  7: being the appropriate 2M ~2~ Pauli spin 
matrices (tensor products of 2 x 2 unit matrices U,, and 2 x 2 ordinary spin Pauli matrices 
IT:, IT:, located at the ith site) (see Schultz et a1 1964, Huang 1963). 

The matrix PLf which ‘transfers’between the rows p k - 1  and & + I  has matrix elements 
of the form: 

(3 .3)  

and may be written, after some algebra, as 

P i r  = V:”Ff(2 sinh 4yQ-’)’-’[ VI exp(-6~;)] 

X[ V2 exp[-2yQ-’~; (~f+ ,+  T; -~) I [V~ exp(-6~1X)]V:’~ (3.4) 

where F, = U, X .  . . x ( U l  X IT;) X . . . x U M  ensures that the sum over row configurations 
in (3.1) does not include those corresponding to the kth row. 

Now taking into account that the matrix { V2 exp[-2yQ-’~;(~T+, + ~ f - ~ ) ] }  commutes 
with [eXp(-6T;)], as none of them depends on the lth spin, the trace in (3.1) may be 
expressed as: 

Z,, =Tr [(2 sinh 4yQ-’)M2/2-1 F,[exp[-2Wl 

x{exp[-2yQ-’T;(T;+l + 7;LI)IH V2 (3.5) 

On the other hand, the partition function of the ordinary 2~ Ising model takes on 

Z=(2s inh4yQ-’)M2’2Tr{(V2V~)M}.  (3.6) 

the form (Schultz et a1 1964) 
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By following Schultz et a l  (1964), we perform the canonical transformation T ; +  - ~ f ,  

Let 10) be the eigenstate associated to the maximum eigenvalue (‘the vacuum’: see 
also the comments after (3.11)) of the product matrix V2Vl. By using equations 
(3.5)-(3.6), the quotient Z k , / Z  in (2.16) can be written, in the thermodynamic limit 
(M+co) as 

T f  -$ T;.  

Z,,/Z = 2 sinh(4yQ-’)l-’(OIF/ eXp(26~;)  exp[-2yQ-’r;(~;+~ + T;-~)]~O). (3.7) 

The exponentials of the Pauli spin matrices can be readily evaluated as 

exp 207: = cosh 20 + ~f sinh 20 

exp[-2 yQ-’r;( T;+’ + 11 
= (cosh 2yQ-’ - sinh 2yQ-’)(cosh 2yQ-1 - T ; _ ~ T ;  sinh 2yQ-I). 

(3.8) 

Next, also by following Schultz et a1 (1964), we introduce the Jordan-Wigner transfor- 
mation: 

(3.9) 

with T ;  = T ;  + iTf and T ;  = T: - irj. We have introduced in (3.9) the fermion operators 
C,, C: with anticommutation rules: 

{C,, c:> = SE,, { c,, C,} = { c:, c;> = 0. (3.10) 

Finally, by using (3.8)-(3.10) the quotient (3.7) may be cast as follows 

&,/Z =[2 sinh(4yQ-’)]-’(O/(exp-26)[(1- CTC,) cosh’2yQ-’ 

+ C,(C:+, + Cl+’ - Cl-] + CT-’) sinh 2yQ-I cosh 2yQ-’ 

- ( CT+’ + C,+l)( Cl-’ - CT-,)C,C: sinh’ 2yQ-’]/0). (3.1 1) 

We recall that the ‘vacuum’ IO) is strictly associated with the new fermion operators 
&, 6; which, at the end, diagonalise the transfer matrix (.&IO) = 0 for all &). In turn, 
the latter are related to the C,, C: operators through the expression (Schultz et a l  
1964) as 

C, = M-l’*[exp(-i$.rr)] (exp iql)(cos 4q,$q -sin 4&T4) 
9 

C: = M-”*(exp i i r )  (exp -iql)(cos 4q,$; -sin $J,,$-~). 
9 

In (3.12) the q’s range over one of the following sets 

27T ( M - 2 ) 7 ~  
(cyclic) 

M ’7T 
q = o , * -  M , ’ .  ., * 

7T 377 M-1 
M ’  M 

q = * -  *-,...,*r 7T (anticyclic) 

and the angles $Jq are defined by ( q  # 0, T): 

(3.12) 

(3.13) 

2 sinh 2yQ-’sin q(cosh 26 cosh 2yQ-’-sinh 26 sinh 2yQ-’ cos q )  
exp E, -[exp(-26)](cosh 2yQ-’+sinh 2yQ-l cos 4)’ 

tan $Jq = (3.14) 

-(exp 26) (sinh 2yQ-l sin q)2 
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where the following determination will be understood 

4 G - 4  - 43 &)= & = O .  

In  (3.14), is the positive root of 

cosh F~ = cosh 4yQ-’ cosh 28 -sinh 4yQ-’ sinh 28 cos q. (3.15) 

The operators 6, 6’ introduced in (3.12) satisfy 

€;lo) = lq), 64/q‘) = 6,,,10). (3.16) 

It turns out that, in order to evaluate the right-hand side of (3.1 1) we need to calculate 
the following expectation value: 

a, =(oliC:C:lo) (3.17) 

where iC*, = C: - C, and C i  = C:+ Ck. Using (3.12) and (3.15), a, may be written 
(Schultz et a1 1964) successively as 

1 
a ,  = - ~ C [ e x p  - iq( j - r ) I [exp(- i2~ , )1  

4 

1 
= -- c cos[24, + ( j  - r )q l  (3.18) 

since c+h4 is an  odd function of q. Equation (3.18) leads directly to the following results 

M 4  

(3.19) 

where Wick’s theorem has been used. That is, we associate fermion operators in pairs, 
replace each pair (contraction) by its ‘vacuum’ expectation value (3.17), multiply the 
product of these contractions by (-1)‘ (where P is the signature of the permutation 
necessary to bring paired operators next to each other starting from the original 
ordering) and  finally, sum over all pairings. 

Collecting the previous results, we arrive at the following explicit expression for 
the quotient of partition functions: 

1 { cosh2(2yQ-’) -x cos’ 44 +sinh(2yQ-’) cosh(2yQ-’) zk/ -- 
2 - 2  cosh2(2yQ-’) M 4  

1 x - 2  cos(24,+q)+sinh2(2yQ-’) 
M 4  
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4. Discussion of the results 

4.1.  Bounds on the ratio z k [ / z  

We shall discuss some general features of &/z. We concentrate on the four spins 
q k * l , l ,  q k , l * l  and introduce the auxiliary positive quantity 

Z k l ( q k r 1 , l r  q k , l + l )  c' exp(%:' qtJ(qZ+lJ + qIJt1)) * (4.1) 
't 9i. i)  .9z., = f 1 

fixed 
41 = I, i . 4k .  I I I 

The dependence of Z k l ( q k r l , l ,  q+,) upon q k * l , k  q k , l + '  comes from the fact that the 
exponential on the right-hand side of (4.1) does depend upon them but no summation 
over those four spins is carried out. Then, we shall introduce the three positive quantities 

(4.3) 

(4.4) 

where X ' n k k l l  i ,9h,*l=*l  indicates that one sums over the possible values of q k r 1 . l  and 
qk,l=l, with the restriction that n( =2 ,3 ,4 )  of those values have to be equal. Then, it 
is easy to see that 

(4.5) 

Z = 2[Z',:'+~osh(4yQ-~)Z~~'+cosh(8yQ-~)Z~']. (4.6) 

Z k I  = zk:' + zk;) + ZE' 

Equations (4.5)-(4.6) imply the following general properties 
(a )  &//z + 4 if y/ Q + 0 
(b)  [2 cosh(8yQ-I)]-' S z k l / z < t  

( C )  zk,/Z+eXp(-8yQ-l) as ')'Q-'+ +Co. 

In fact, it is well known that, as yQ-' increases, the 2~ Ising model has a phase 
transition, so that, for suitably large yQ above the critical point, practically all spins 
are in one of the two ordered phases (either q,, = + 1  or qo = -1, for any i ,  j ) .  This 
implies that ZL:' dominates in such a regime, which yields to the stated property. 

4.2. Numerical analysis 

We have studied (3.20) numerically for several values of M (number of spins in each 
row or column) and of yQ-' respectively. The results that we have obtained, part of 
which are collected in appendix 3, are in good agreement with the bounds presented 
in the preceding subsection, that is: ( i )  z k [ / z  -+ $ as y 0 - I  decreases, (ii) &/z + 0 like 
exp(-8yQ-') for yQ-' large. 

Above_ the critical point of the 2~ Ising model (which corresponds to 2yQ- '=  
f In( 1 + J 2 )  = 0.440 687) the results are insensitive to M, that is, the same ratio &/z 
is obtained for M = lo3 or M = I O 4 ,  for values of 2yQ-' = 0.43. In contrast, below the 
critical point the results decrease more rapidly with increasing M. 

Another important feature, which clearly appears for any M, is a zero in the second 
derivative of z k l / z  with respect to 2yQ-' at the critical point (see table 1). The slope 
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Table 1. 

0.440 682 
0.440 683 
0.440 684 
0.440 685 
0.440 686 
0.440 687 
0.440 688 
0.440 689 
0.440 690 

0.275 583 
0.275 579 
0.275 576 
0.275 562 
0.275 568 
0.275 565 
0.275 561 
0.275 557 
0.275 554 

-3.656 779 
-3.656 883 
-3.656 965 
-3.657 024 
-3.657 060 
-3.657 075 
-3.657 066 
-3.657 035 
-3.656 981 

M = 6000. 

of zkI/z with respect to 2yQ-I becomes more negative with greater values of M. In 
fact, the numerical results would seem to suggest a divergence of the first derivative 
of zk./z with respect to 2yQ-I as it decreases from appraximately -3 for M = lo3 to 
-4 for M = IO4. Unfortunately, it is very difficult to go on to higher values of M 
because of rounding-off errors, that accumulate with M, yielding nonsensical results. 

Nevertheless, there are analytical arguments which support the existence of a 
divergence in the first derivative of zkf/z at the critical point. In fact, let us write the 
quotient zk,/z in the following way 

(4.7) 

where the & factor is introduced in order to eliminate the summation over the two 
possible values of q k , /  = * l ,  which was not in &I. Expanding the exponential in (4.7), 
the ratio &/z may be expressed as a linear combination of two-point correlation 
functions, between nearest and next-nearest neighbours, and four-point correlation 
functions among the ( k ,  I)-spin and its four nearest neighbours. As it is shown by 
McCoy and  Wu (1973), the two-point correlation functions between nearest and  
next-nearest neighbours have an inflexion point with a logarithmically divergent slope 
at the critical point, which agrees with what our numerical computations suggest. 
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Appendix 1. Justification of (2.9) and (2.10a, b )  

The starting point is (2.7), where we set E ,  2 0 .  We stress that we are searching for 
an  approximate solution for it, to be used at a later stage (see 0 2.1) in order to evaluate 
N and, then, to get a more accurate (variational) expression for El. We set q8, = E,, +U,, 

for ( i , j )  # ( k ,  I ) ,  E :  = +1, where IcrYl  and qkl are assumed to be small compared to 
unity. Then, it is allowed to approximate q', - qv = 2a,,, sil - q t l  = -qkl in (2.71, which 
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becomes 

( A l . l )  

In ( A l . l ) ,  Z ,.,= denotes a finite sum for ( i ,  j )  = ( k +  I ,  I ) ,  ( k -  1, I ) ,  ( k ,  I +  l ) ,  ( k ,  I - 1) 
while B ,  contains all contributions to the right-hand side of (2.7) which depend on 
all uz, (and derivatives thereof) for any ( i , j )  # ( k ,  I ) ,  ( k *  1 ,  I ) ,  ( k ,  I* 1). On the other 
hand, B2 is the remainder, namely, the sum of four terms: the first is 

- Y ( & k + Z , /  + & k + l , l + l  + &k+1,/-1 - 4 & k + l , l +  u k + z . l  + u k + l , l + l  + c + k + l , r - l ) a h l / a u k + l , /  

and so on  for the other three. 
At this point, we shall perform the following changes of variables 

( 1 )  
uk + I ,/ - U k -  I , I  = a kl  

( 2 )  
U k , l + l  - U k , f - l  = a k f  

(i) u k +  I . I  + u k  - I , I  = A(k?, 
ukk,f+I + uk, / - l  = Ag’, 

A‘)  1 - A(’’ - A (ii) AL)’+A‘,:’ =A+,  kf  k f  - -. 
Then, (A I .  1 ) becomes 

(A1.2) 

(A1.3) 

Equation (A1.2) is almost ready to arrive at the desired approximate results, since, for 
p >> y ,  the dependence of h ,  upon the variable q k l  can be decoupled from that of the 
remaining ones. In fact, by performing the last change of variables 

(A1.4) 

one looks for the angle 0 such that the coefficients of qLlah,/aA: and A:ah,/aq;, 
vanish. One  finds tan 2% = 4 y / 3 p ,  which is very small if p >> y. By keeping track of 
the dependence of B2 upon q k l  and carrying through the preceding changes of variables, 
one sees that it contains y sin O a / a q L l  and y cos ea/aA:. times sums of terms like (+kr2, f ,  

u k , / & ,  f l k r l . [ + l ,  u ~ * ~ , ~ - ~ .  N o  such contributions appear in either B1 or B3. Clearly, the 
term y cos %a/aA: can be included into the terms which d o  not depend upon qLf, so 
that the only coupling between qLr and the other variables comes from the term 
y sin ea/aq;/ .  Consequently, for p >> y,  the factorised form 

is an approximate solution of (A1.2), when coupling terms between h’ and il of order 
y sin 9 are neglected. Finally, by setting 0 = 0, qLl = q k l  and h’, = constant, one arrives 
directly at (2.9) and (2.10a, b) .  
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Appendix 2. On the uniqueness of (2.15) and of the configurations leading to it 

One may ask whether other configurations corresponding to n ( 2 2 )  ‘spins’ located at 
the sites (kill). . . (k,,l,,), all of which would be ‘performing the tunnelling’ between 
+1 and -1, could also contribute to N (2.8). The additional requirement that those 
n ‘tunnelling spins’ be suitably separated from one another seems a sufficient condition 
to ensure that the procedure outlined in appendix 1 (in particular, the decoupling of 
a ‘tunnelling spin’ from its neighbours) could be generalised to them. Consequently, 
an  approximate solution of (2.7) with El = 0 for n ‘tunnelling spins’ would be 

h ~ ( { q , } ) =  ( fi c(qk,f,))il({qy}, ( i , j )  f (kill). . . ( k n l n ) )  (A2.1) 

where i , ( {q j , } ,  ( i , j )  # ( k , l l )  . . . ( k n l n ) )  can be regarded as a constant and  each c(qkJ,) 
is given by ( 2 . 1 0 ~ )  (with ( k ,  l ) +  ( k ,  l r ) ) ,  Consequently, a new variational calculation 
should be undertaken for N, using (A2.1) together with the obvious generalisation of 
(2.1 I )  for n ‘tunnelling spins’. 

r =  I 

Then, one sees immediately that N is proportional to 

(A2.2) 

where ( y  terms) denotes a quadratic form of the q’s (which is independent of p ) ,  
whose detailed form can be inferred easily from ( 2 . 1 0 ~ )  and (2.11) but turns out to 
be immaterial, here. In fact, for P suitably larger than y and n 3 2, one sees immediately 
that (A2.2) diverges. Consequently, configurations with n (  2 2 )  well separated ‘tunnel- 
ling spins’ cannot contribute to E , .  

It is unclear, a priori, whether the above argument could be applied directly when 
there is, at least, two ‘tunnelling spins’ which lie close to each other. Then, we shall 
analyse the extreme situation where all spins in the infinite planar lattice are performing 
the tunnelling. This amounts to assuming that P (  q i  - q v )  = -Pq,, for any ( i ,  j )  in (2.3) 
and (2.1). Notice that, then, fo becomes unnormalisable ( j  IIGZ-, dq,,]fo = +a) as P 
is larger than y. We shall find all eigenvalues of the corresponding Fokker-Planck 
equation under the above (crude) approximation and see that all of them diverge and, 
hence, turn out to be completely different from E,,  as given by (2.15). For that purpose, 
it is simpler to go over to an  equivalent Hamiltonian formulation, through the transfor- 
mation f+ q =&”’f (fo being given through (2.1), (2.4) with (Y = - P  and all pq;‘/4 
terms omitted). One finds that cp satisfies 

Hp = -&plat  (A2.3) 

(A2.4) 

P,, = -iQ1’2d/aq,,. (A2.5) 
Our task reduces to diagonalising H. This can be done by a direct generalisation of 
the procedure discussed in D 3.1.1 of Itzykson and  Zuber (1980). One introduces the 
creation and annihilation operators a’( i l ,  i 2 ) ,  a(  il, 1’) through 

[a( i , ,  1 ’ )  e x p i ( L I r + 1 2 s ) + ~ c ]  (A2.6) 
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[ L I ( L ~ ,  L ~ )  exp i( L~ r +  L ~ S )  - HC] (A2.7) 

so that H becomes 

(A2.9) 

(A2.10) 

w(ll ,L2)=p-2y[(l-cOs Ll)+(l-coSL2)]. (A.2.11) 

Notice that Ho is the overall ‘zero-point energy’. Since 

+E 

H o =  c ( P - 4 y )  (A2.12) 
,,s=--2 

it follows that all eigenvalues of Ho diverge, as they have Ho as a lower bound. 
Consequently, none of them has the structure of El (2.15)). 

One could ask whether the first non-vanishing eigenvalue should not correspond 
to a long-wavelength excitation. In fact, for p = 0 and arbitrary a, y, (2.3) can be 
transformed by using f=fi1’2d into (A2.3) with 

H = c W S  + t Q - I b q n  - Y(4r+l,r + q r - 1 , x  + %,,+I  + q r , s - I  - 4qr,,)I2 -;(a + 4Y)). 
rs 

(A2.13) 

By using the transformation (A2.6)-(A2.8), (A2.13) becomes (A2.9) with Ho = 0 and 

For a = O  and small L ~ ,  L ~ ,  the smallest eigenvalue would correspond to the state 
formed by applying a+(L1, L ~ )  upon ‘the vacuum’ and its value would be y ( ~ ; +  L : )  which 
could indeed be interpreted as a long-wavelength excitation. However this is no longer 
true for large p, which is the case treated in this paper. In fact, let us consider small 
fluctations about the configurations where all oscillators are at qrl = +1, that is q!, = 
1 +U,], where all U,] are small. By keeping leading-order terms, using f = f ; l 2 4  and 
(A2.6)-(A2.8) one arrives at  (A2.3) and (A2.9) where now, Ho = 0 and  

w = a + 2y[( 1 -cos L l )  + (1 - cos 4 1 .  

w = 2[p + y( 1 -cos L I  + 1 - cos 12)] ( A2.14) 

(compare with the remarks between (2.1) and (2.2)). 
For small L ~ ,  L~ (A2.14) becomes 

w=2(p++y(L:+‘:)/ 

which is much larger than (2.15) since p is large. 
As in the infinite linear chain of overdamped coupled anharmonic oscillators with 

noise, E I / [ p  exp(-$Q-’)] increases for small values of y and  then it decreases as y 
becomes sufficiently large. 

The region of small y is where the calculation is more reliable. The reliability of 
the calculation as y increases is limited by our previous neglect of terms, which 
was fully justified when y 2 / p  and, hence, y / p  are small. 
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Appendix 3. Numerical results for the ratio ZkJZ 

0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 

0.41 
0.42 
0.43 
0.44 
0.45 
0.46 
0.47 
0.48 
0.49 
0.50 

0.90 
0.9 1 
0.92 
0.93 
0.94 
0.95 
0.96 
0.97 
0.98 
0.99 

0.4993 
0.4988 
0.498 1 
0.4973 
0.4963 
0.495 1 
0.4938 
0.4924 
0.4907 
0.4889 

0.327 I 
0.3 137 
0.2982 
0.2778 
0.2554 
0.2399 
0.2268 
0.2152 
0.2047 
0.1952 

0.0422 
0.0407 
0.0392 
0.0378 
0.0365 
0.0352 
0.0339 
0.0327 
0.03 15 
0.0304 

-0.038 
-0.053 
-0.068 
-0.083 
-0.099 
-0.1 I5 
-0.131 
-0.147 
-0.163 
-0.180 

- 1.200 
- 1.339 
-1.549 
-2.044 
-2.237 
-1.552 
-1.312 
-1.158 
- 1.045 
-0.095 

-0.016 
-0.01 5 
-0.014 
-0.014 
-0.013 
-0.0 I3 
-0.013 
-0. I02 
-0.012 
-0.01 1 

0.5302 
0.5403 
0.5505 
0.5607 
0.5709 
0.58 1 I 
0.5912 
0.6014 
0.6115 
0.62 16 

0.7426 
0.7266 
0.7047 
0.6697 
0.6282 
0.6019 
0.5805 
0.5620 
0.5455 
0.5306 

0.2552 
0.25 1 1 
0.2470 
0.243 I 
0.2391 
0.2352 
0.23 I4 
0.2277 
0.2240 
0.2203 

M = 10000. 
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